
JavaScript Zero: Real JavaScript and
Zero Side-Channel Attacks

Michael Schwarz, Moritz Lipp and Daniel Gruss
Graz University of Technology

{michael.schwarz,moritz.lipp,daniel.gruss}@iaik.tugraz.at

Abstract—Modern web browsers are ubiquitously used by
billions of users, connecting them to the world wide web. From the
other side, web browsers do not only provide a unified interface
for businesses to reach customers, but they also provide a unified
interface for malicious actors to reach users. The highly optimized
scripting language JavaScript plays an important role in the
modern web, as well as for browser-based attacks. These attacks
include microarchitectural attacks, which exploit the design of
the underlying hardware. In contrast to software bugs, there is
often no easy fix for microarchitectural attacks.

We propose JavaScript Zero, a highly practical and generic
fine-grained permission model in JavaScript to reduce the attack
surface in modern browsers. JavaScript Zero facilitates advanced
features of the JavaScript language to dynamically deflect usage
of dangerous JavaScript features. To implement JavaScript Zero in
practice, we overcame a series of challenges to protect potentially
dangerous features, guarantee the completeness of our solution,
and provide full compatibility with all websites. We demonstrate
that our proof-of-concept browser extension Chrome Zero protects
against 11 unfixed state-of-the-art microarchitectural and side-
channel attacks. As a side effect, Chrome Zero also protects
against 50 % of the published JavaScript 0-day exploits since
Chrome 49. Chrome Zero has a performance overhead of 1.82%
on average. In a user study, we found that for 24 websites in
the Alexa Top 25, users could not distinguish browsers with and
without Chrome Zero correctly, showing that Chrome Zero has
no perceivable effect on most websites. Hence, JavaScript Zero is
a practical solution to mitigate JavaScript-based state-of-the-art
microarchitectural and side-channel attacks.

I. INTRODUCTION

Over the past 20 years, JavaScript has evolved to the pre-
dominant language on the web. Of the 10 million most popular
websites, 94.7% use JavaScript [54]. Dynamic content relies
heavily on JavaScript, and thus, most pages use JavaScript
to improve the user experience, using, e.g., AJAX and dy-
namic page manipulation. Especially for platform-independent
HTML5 applications, JavaScript is a vital component.

With the availability of modern browsers on mobile de-
vices, web applications target smartphones and tablets as well.
Furthermore, mobile platforms typically provide a number of

sensors and features not present on commodity laptops and
desktop computers. To make use of these additional features,
the World Wide Web Consortium (W3C) provides drafts and
recommendations for additional APIs [53]. Examples include
the Geolocation API [49] and the Battery Status API [48].
These APIs are supported by most browsers and allow de-
velopers to build cross-platform web applications with similar
functionality as native applications.

Undoubtedly, allowing every website to use such APIs has
security and privacy implications. Websites can exploit sensors
to fingerprint the user [52] by determining the number of
sensors, their update frequency, and also their value (e.g., for
battery level or geolocation). Furthermore, sensor data can be
exploited to mount side-channel attacks on user input [7], [23].

Microarchitectural attacks can also be implemented in
JavaScript, exploiting properties inherent to the design of the
microarchitecture, such as timing differences in memory ac-
cesses. Although JavaScript code runs in a sandbox, Oren et al.
[33] demonstrated that it is possible to mount cache attacks
in JavaScript. Since their work, a series of microarchitectural
attacks have been mounted from websites, such as page
deduplication attacks [14], Rowhammer attacks [15], ASLR
bypasses [13], and DRAM addressing attacks [40].

As a response to these attacks, some—but not all—of the
APIs have been restricted by reducing the resolution (e.g., High
Precision Time API) [2], [6], [9] or completely removing them
(e.g., DeviceOrientation Event Specification) [51]. However,
these countermeasures are incomplete as they do not cover all
sensors and are circumventable [13], [40].

A common trait of all attacks is that they rely on the
behavior of legitimate JavaScript features, which are rarely
required by benign web applications. However, removing these
JavaScript features entirely breaks the compatibility with the
few websites that use them in a non-malicious way. This is,
for example, the case with NoScript, a browser extension that
completely blocks JavaScript on a page [10].

We propose JavaScript Zero, a fine-grained JavaScript per-
mission system, which combines ideas from existing permis-
sion systems in browsers and smartphone operating systems.
JavaScript Zero facilitates advanced features of the JavaScript
language to overcome the following three challenges:

C1 Restrictions must not be circumventable using self-
modifying code, such as higher-order scripts.

C2 Restricting access to potentially dangerous features must
be irreversible for a website.

C3 Restrictions must not have a significant impact on com-
patibility and user experience.

Network and Distributed Systems Security (NDSS) Symposium 2018
18-21 February 2018, San Diego, CA, USA
ISBN 1-1891562-49-5
http://dx.doi.org/10.14722/ndss.2018.23094
www.ndss-symposium.org

To overcome challenge C1, we utilize advanced language
features such as virtual machine layering [19] for security. In
contrast to previous approaches [56], virtual machine layer-
ing allows redefining any function of the JavaScript virtual
machine at runtime. Hence, we can cope with obfuscated
code and higher-order scripts, i.e., scripts that generate scripts.
JavaScript Zero replaces all potentially dangerous functions
with secure wrappers. When calling such a function, JavaScript
Zero decides whether to perform a pre-defined action or ask
the user for permission to execute the function.

To overcome challenge C2, we utilize closures, another
advanced feature of the JavaScript language, for security.
Variables in closures cannot be accessed from any outside
scope, providing us with language-level protection for our
countermeasure. With closures, we make all references to
original unprotected functions inaccessible to the website.

We provide a proof-of-concept implementation as a
Chrome browser extension, Chrome Zero. In contrast to pre-
vious protection techniques [24], [18], Chrome Zero requires
no changes to the browser source code. Hence, Chrome Zero
requires lower maintenance efforts while at the same time users
also benefit from the security of the most up-to-date browser.

To overcome challenge C3, we keep user interactions
to a minimum and provide multiple protection levels with
pre-defined restrictions. We do not only provide a binary
permission system to block or allow certain functionality, but
we also allow to modify the semantics of functions and objects.
For example, the user can allow the usage of the high-precision
timing API but decides to reduce the available resolution to
100ms instead of 5 µs. These settings can be configured by
either the user or the community, through a protection list.

We evaluate the efficacy of Chrome Zero on 23 recent side-
channel attacks, microarchitectural attacks, and 0-day exploits.
We show that it successfully prevents all microarchitectural
and side-channel attacks in JavaScript. Although not a main
goal of Chrome Zero, it also prevents 50% of the published
JavaScript 0-day exploits since Chrome 49. This shows that
we were able to solve challenges C1 and C2.

To evaluate whether Chrome Zero solves challenge C3, we
measure the performance overhead and the impact on the user
experience for the Alexa Top 25 websites, at the second highest
security level. On average, we observe a performance overhead
of 1.82%. In a double-blind user study, we found that for 24
websites out of the Alexa Top 25, users could not distinguish
browsers with and without Chrome Zero showing that Chrome
Zero has no significant effect on the user experience.

Contributions. The contributions of this work are:

1) We propose JavaScript Zero, a fine-grained JavaScript
permission system to mitigate state-of-the-art microarchi-
tectural and side-channel attacks.

2) We show that combining advanced and novel features
of the JavaScript language, e.g., virtual machine layer-
ing, closures, proxy objects, and object freezing, can be
retrofitted to form a basis for strong security boundaries.

3) We show that JavaScript Zero successfully prevents all
published microarchitectural and side-channel attacks and
as a side effect also mitigates 50% of the published
JavaScript 0-day exploits since Chrome 49.

4) We evaluate our proof-of-concept implementation Chrome
Zero in terms of performance and usability. Chrome Zero
has 1.82% performance overhead on average on the
Alexa Top 10 websites. In a double-blind user study, we
show that users cannot distinguish a browser with and
without Chrome Zero for 24 of the Alexa Top 25 websites.

The remainder of the paper is organized as follows. Sec-
tion II provides preliminary information necessary to under-
stand the defenses we propose. Section III defines the threat
model. Section IV describes the design of JavaScript Zero.
Section V details our proof-of-concept implementation Chrome
Zero. Section VI provides a security analysis of Chrome Zero
as an instance of JavaScript Zero. Section VII provides a
usability analysis of Chrome Zero. Section VIII discusses
related work. We conclude our work in Section IX.

II. PRELIMINARIES

In this section, we provide preliminary information on
microarchitectural attacks in native code and JavaScript, and
on JavaScript exploits.

A. Microarchitectural Attacks

Modern processors are highly optimized for computational
power and efficiency. However, optimizations often intro-
duce side effects that can be exploited in so-called microar-
chitectural attacks. Microarchitectural attacks comprise side-
channel and fault attacks on microarchitectural elements or
utilizing microarchitectural elements, e.g., pipelines, caches,
buses, DRAM. Attacks on caches have been investigated
extensively in the past 20 years, with a focus on cryptographic
implementations [17], [4]. The timing difference between a
cache hit and a cache miss can be exploited to learn secret
information from co-located processes and virtual machines.
Modern attacks use either Flush+Reload [55], if read-only
shared memory is available, or Prime+Probe [34] otherwise.
In both attacks, the attacker manipulates the state of the cache
and later on checks whether the state has changed. Besides
attacks on cryptographic implementations [34], [55], these
attack primitives can also be used to defeat ASLR [13] or
to build covert-channels [22].

B. Microarchitectural and Side-Channel Attacks in JavaScript

Microarchitectural attacks were only recently exploited
from JavaScript. As JavaScript code is sandboxed and in-
herently single-threaded, attackers face certain challenges in
contrast to attacks in native code. We identified several re-
quirements that are the basis for microarchitectural attacks,
i.e., every attack relies on at least one of these primitives.
Moreover, sensors found on many mobile devices, as well as
modern browsers introduce side-channels which can also be
exploited from JavaScript. Table I gives an overview of, to the
best of our knowledge, all 11 known microarchitectural and
side-channel attacks in JavaScript and their requirements.

a) Memory Addresses: JavaScript is a sandboxed script-
ing language which does not expose the concept of pointers
to the programmer. Even though pointers are used internally,
the language never discloses virtual addresses to the program-
mer. Thus, an attacker cannot use language features to gain
knowledge of virtual addresses. The closest to virtual addresses

2

TABLE I: REQUIREMENTS OF STATE-OF-THE-ART SIDE-CHANNEL ATTACKS IN JAVASCRIPT.

Memory addresses Accurate timing Multithreading Shared data Sensor API

Rowhammer.js [15]
Practical Memory Deduplication Attacks in Sandboxed Javascript [14]

Fantastic Timers and Where to Find Them [40] †

ASLR on the Line [13] †

The spy in the sandbox [33]
Loophole [47]

Pixel perfect timing attacks with HTML5 [44] †

The clock is still ticking [45]
Practical Keystroke Timing Attacks in Sandboxed JavaScript [20] †

TouchSignatures [23]
Stealing sensitive browser data with the W3C Ambient Light Sensor API [31]

† If accurate timing is not available, it can be approximated using a combination of multithreading and shared data.

are ArrayBuffers, contiguous blocks of virtual memory.
ArrayBuffers are used in the same way as ordinary arrays
but are faster and more memory efficient, as the underlying
data is actually an array which cannot be resized [26]. If
one virtual address within an ArrayBuffer is identified,
the remaining addresses are also known, as both the addresses
of the memory and the array indices are linear [14], [13].

Gras et al. [13] showed that ArrayBuffers can be
exploited to reconstruct virtual addresses. An attacker with
knowledge of virtual addresses has effectively defeated address
space layout randomization, thus circumventing an important
countermeasure against memory corruption attacks.

Microarchitectural attacks typically do not rely on virtual
addresses but physical addresses. Cache-based attacks [33],
[15] rely on parts of the physical address to determine cache
sets. DRAM-based attacks [15], [14], [40] also rely on parts of
the physical address to determine the beginning of a page or
a DRAM row. However, for security reasons, an unprivileged
user does not have access to the virtual-to-physical mapping.
This is not only true for JavaScript, but also for any native
application running on a modern operating system.

Consequently, microarchitectural attacks have to resort
to side-channel information to recover this information.
Gruss et al. [14] and Gras et al. [13] exploit the fact
that browser engines allocate ArrayBuffers always page
aligned. The first byte of the ArrayBuffer is therefore at the
beginning of a new physical page and has the least significant
12 bits set to ‘0’.

For DRAM-based attacks, this is not sufficient, as they
require more bits of the physical address. These attacks exploit
another feature of browser engines and operating systems. If a
large chunk of memory is allocated, browser engines typically
use mmap to allocate this memory, which is optimized to
allocate 2MB transparent huge pages (THP) instead of 4KB
pages [15], [40]. As these physical pages are mapped on
demand, i.e., as soon as the first access to the page occurs,
iterating over the array indices results in page faults at the
beginning of a new page. The time to resolve a page fault is
significantly higher than a normal memory access. Thus, an
attacker knows the index at which a new 2MB page starts. At
this array index, the underlying physical page has the 21 least
significant bits set to ‘0’.

b) Accurate Timing: Accurate timing is one of the most
important primitives, inherent to nearly all microarchitectural

and side-channel attacks. As most of the microarchitectural and
side-channel attacks exploit some form of timing side channel,
they require a way to measure timing differences. The required
resolution depends greatly on the underlying side channel.
For example, DRAM-row conflicts [15], [40], cache-timing
differences [33], [13], and interrupt timings [20] require a
timing primitive with a resolution in the range of nanoseconds,
whereas for detecting page faults [14], [15], [40], exploiting
SVG filters [44], or mounting cross-origin timing attacks [45],
a resolution in the range of milliseconds is sufficient.

JavaScript provides two interfaces for measuring time.
The Date object represents an instance in time, used to
get an absolute timestamp. The object provides a method
to get a timestamp with a resolution of 1ms. The second
interface is the Performance object which is used to provide
information about page performance. This interface provides
several timing relevant properties and functions, such as the
performance.now() function, which provides a highly
accurate timestamp in the order of microseconds [40]. Another
part of the Performance object is the User Timing API,
a benchmarking feature for developers, which also provides
timestamps in the order of microseconds.

However, the resolution of these built-in timers is not high
enough to measure microarchitectural side channels, where
the timing differences are mostly in the order of nanosec-
onds. Thus, such attacks require a custom timing primitive.
Usually, it is sufficient to measure timing differences, and an
absolute timestamp is not necessary. Thus, access to a full-
blown clock is not required, and attackers usually settle for
some form of a monotonically incremented counter as a clock
replacement. Kohlbrenner et al. [18] and Schwarz et al. [40]
investigated new methods to get highly accurate timing. Most
of their timing primitives rely on either building counting loops
using message passing [40] or on interfaces for multimedia
content [18]. Using such self-built timers, it is possible to
measure timing differences with a nanosecond resolution.

c) Multithreading: JavaScript is inherently single-
threaded and based on an event loop. All events, such as
function calls or user inputs, are pushed to this queue and
then serially, and thus synchronously, handled by the engine.
HTML5 introduced multithreading to JavaScript, in the form
of worker threads (web workers), allowing real parallelism for
JavaScript code. With web workers, every worker has its own
(synchronous) event queue. The synchronization is handled via

3

messages, which are again events. Thus, JavaScript does not
require explicit synchronization primitives.

The support for true parallelism allows to mount new side-
channel attacks. Vila et al. [47] exploited web workers to spy
on different browser windows by measuring the dispatch time
of the event queue. This timing side-channel attack allows to
detect user inputs and identify pages which are loaded in a
different browser window. A similar attack using web workers
was shown by Lipp et al. [20]. However, this attack does not
exploit timing differences in the browser engine, but on the
underlying microarchitecture. An endless loop running within
a web worker detects CPU interrupts, which can then be used
to deduce keystroke information.

d) Shared Data: To synchronize and exchange data,
web workers have to rely on message passing. Message passing
has the advantage over unrestricted memory sharing as there
is no requirement for synchronization primitives. Sending an
object to a different worker transfers the ownership of the
object as well. Thus, objects can never be changed by multiple
workers in parallel.

As transferring the ownership of objects can be
slow, JavaScript introduced SharedArrayBuffers. A
SharedArrayBuffer is a special object which behaves the
same as a normal ArrayBuffer, but it can be simultaneously
accessed by multiple workers. Inherently, this can reintroduce
synchronization problems.

Schwarz et al. [40] and Gras et al. [13] showed that this
shared data can be exploited to build timing primitives with
a nanosecond resolution. Their timing primitive requires only
one worker running in an endless loop and incrementing the
value in a SharedArrayBuffer. The main thread can
simply use the value inside this shared buffer as a timestamp.
Using this method, it is possible to get a timestamp resolution
of 2 ns, which is almost as high as Intel’s native timestamp
counter, and thus sufficient to mount DRAM- and cache-based
side-channel attacks.

e) Sensor API: As JavaScript is also used on mobile
devices, HTML5 introduced interfaces to interact with device
sensors. Some sensors are already restricted by the existing
permission system in the browser, such as the geolocation
API. This permission system uses callback functions to deliver
results. Hence, it is inherently incompatible with existing
synchronous APIs and cannot be instrumented to protect
arbitrary JavaScript functions. As these sensors can affect the
user’s privacy, the user has to explicitly permit usage of these
interfaces on a per-page basis. However, several other sensors
are not considered invasive in terms of security or privacy.

Mehrnezhad et al. [23] showed that access to the motion
and orientation sensor can compromise security. By recording
the data from these sensors, they were able to infer PINs
and touch gestures (e.g., zoom) of the user. Although not
implemented in JavaScript, Spreitzer [42] showed that access
to the ambient light sensor (as specified by the W3C [50]) can
also be exploited to infer user PINs. Similarly, Olejnik [31]
utilized the Ambient Light Sensor API to recover information
on the user’s browsing history, to violate the same-origin
policy, and to steal cross-origin data.

C. JavaScript Exploits

In addition to microarchitectural and side-channel attacks,
there are also JavaScript-based attacks exploiting vulnerabili-
ties in the JavaScript engine. An exploit triggers an implemen-
tation error in the engine to divert the control flow of native
browser code. These implementation errors can—and should—
be fixed by browser vendors. Side-channel attacks, however,
often arise from the hardware design. In contrast to software,
the hardware and hardware design cannot be easily changed.

As exploits are based on implementation errors and not
design issues, we cannot identify general requirements for
such attacks. Every JavaScript function and each interface
can be potentially abused if there is a vulnerability in the
engine. Thus, we cannot provide a general protection against
exploits, and exploits are therefore not in the scope of this
paper. However, we can still reduce the attack surface of the
browser, and we provide practical protection against 50% of
the published JavaScript 0-day exploits since Chrome 49.

Exploits often rely on arrays to craft their payload. More-
over, bugs are often triggered by errors in functions re-
sponsible for parsing complex data (e.g., JSON). As some
of the functions used in exploits are also requirements for
microarchitectural and side-channel attacks, we also evaluate
exploits in this paper to confirm that our permission system
is also applicable to reduce the general attack surface of the
browser, i.e., hardening browsers against 0-day exploits until
they are fixed by the browser vendors.

III. THREAT MODEL

In our threat model, we assume that the attacker is capable
of performing state-of-the-art microarchitectural and software-
based side-channel attacks in JavaScript. This is a reasonable
assumption, as we found most published attacks to be ac-
companied with proof-of-concept source code allowing us to
reproduce the attacks.

We assume that the victim actively uses a browser, either
natively, or in a virtual machine. The attacker resides either
in a different, co-located virtual machine [14], [40] or—for
most attacks—somewhere else on the internet. In all state-
of-the-art microarchitectural and software-based side-channel
attacks, the attacker has some form of remote code execution.
In line with these works, we assume that the attacker was
able to maliciously place the attack code in a benign website.
This can be achieved if the benign website either includes
content from a (malicious) third party, such as advertisements
or libraries, or if an attacker has compromised the benign site
in some way. Another possibility is that the victim navigated
to a malicious website controlled by the attacker. Hence, in
all cases, the attacker-controlled JavaScript code is executed
in the victim’s browser.

The browser contains a JavaScript engine that executes
code embedded in a website inside the browser sandbox.
The sandbox ensures that JavaScript code cannot access any
system resources not intended to be accessed. Furthermore,
every page has its own execution context protected by the
sandbox, i.e., code on different pages cannot influence each
other. We assume that an attacker is not aware of exploitable
bugs in the JavaScript engine, and hence, can only use legit-
imate JavaScript features. Exploiting bugs in the interpreter,

4

(Malicious) JavaScript Code

JavaScript Engine

Permission System

Loops,
Conditions,
Arithmetic,

· · ·

Functions,
Objects,
· · ·

Fig. 1: The permission system acts as an abstraction layer
between the JavaScript engine and the interfaces provided to
a JavaScript developer.

1 function : {
2 "window.performance.now":
3 { action: "modify",
4 return: "Math.floor(window.performance.now()
5 / 1000.0) * 1000.0" },
6 "history.back":
7 { action: "block" },
8 "navigator.getBattery":
9 { action: "ask", default: "null" }

Listing 1: Excerpt of a protection policy. The function
performance.now is modified to return timestamps with
a lower resolution, the function history.back is blocked.

sandbox, or other execution environments, is out of scope for
this paper.

IV. DESIGN OF JavaScript Zero

In this section, we present the design of our JavaScript
permission system, JavaScript Zero. We propose a fine-grained
policy-based system which allows to change the behavior of
standard JavaScript interfaces and functions. Policies enforce
certain restrictions to a website to protect users from malicious
JavaScript. They allow to quickly adapt the permission system
to protect against newly discovered attacks. Furthermore, dif-
ferent policies can be combined by the user, depending on the
desired level of protection.

The idea of JavaScript Zero is to introduce an abstraction
layer between the JavaScript engine and the interface provided
to a (malicious) JavaScript developer. The basic idea of this
layer is to protect functions, interfaces, and object properties,
as shown in Figure 1. The abstraction layer can block, modify,
or simply forward every interaction of the code with the
JavaScript engine. The layer is completely transparent to the
web application and, thus, no modification of any existing
source code is required to deploy JavaScript Zero. JavaScript
Zero can intercept all calls to functions provided by the
language, which also includes constructors of objects and
getters of object properties. However, it does not interfere with
the constructs of the language itself, i.e., loops and primitive
data types bypass the abstraction layer. In the remainder of
this paper, we use the term “functions” to refer to general
functions, object constructors, and getters of object properties
for the sake of brevity.

The exact behavior of JavaScript Zero is defined by a
protection policy. A protection policy is a machine-readable
description which contains a policy for every function, prop-
erty, or object that should be handled by the permission system.
Listing 1 shows an excerpt of such a policy. In this sample
policy, the function to go back to the last website is completely

blocked, i.e., if a script calls this function, it does nothing.
Furthermore, the resolution of the high-resolution timer is
reduced from several microseconds to one second. Finally, the
battery API requires permission from the user, and if the user
denies access to the function, it simply returns no information.

The policies can be designed by any user and shared
with other users. Thus, as soon as a new exploit, side-
channel attack, or microarchitectural attack emerges, a new
policy preventing it can be created and shared with all users.
We propose a community-maintained policy repository where
users can subscribe to certain kinds of policies, e.g., more or
less strict policies for their specific hardware and software.
The functionality of JavaScript Zero does not fundamentally
rely on the community, and every user can also write their
own policies, or thoroughly inspect third-party policies before
applying them. Hence, a careful user can avoid the inherent
limitations of a community-maintained policy, e.g., adversarial
modifications, which can happen in any open-source project.

For every policy, there are four different possibilities how
it affects a function used on a website:

1) Allow. The function is explicitly allowed or not specified
in the policy. In this case, no action is performed and the
function can be used normally.

2) Block. The function is blocked. In this case, JavaScript
Zero replaces the function by a stub that only returns a
given default value.

3) Modify. The function is modified. In this case, JavaScript
Zero replaces the original function with a policy-defined
function. This function can still call the original function
if necessary.

4) User permission. The function requires the permission
of the user. In this case, JavaScript Zero has to pause
execution of the current function, display a notification
to the user, and wait for the response of the user.

In the fourth case, the user has to explicitly grant permis-
sion. The user can opt to save the decision, to not be bothered
again, and, thus, user interruptions are kept to a minimum.

We opted for a browser extension, as it can be easily
installed in a user’s browser and neither relies on modification
of the source code of the website or the browser, nor any
external service, e.g., a web proxy. Thus, there is no constant
maintenance of a forked browser source base necessary. More-
over, by designing JavaScript Zero as a browser extension,
it can easily be implemented for any browser supporting
extensions (e.g., Chrome, Firefox, Edge) as the design of
JavaScript Zero is independent of the browser.

Figure 2 shows the general design of this approach. Func-
tions are replaced by wrapper functions which can either
immediately return a result or divert the control flow to the
browser extension. The browser extension can then ask the
user whether to allow the function call or block it.

To allow regular users to use such a browser extension on
a day-to-day basis, we propose a simple interface for handling
protection policies. This interface defines so-called protection
levels, each grouping one or more protection policies. Thus, a
user only chooses a protection level out of a predefined set
of levels, e.g., one of none, low, medium, high, paranoid.
Although this simplification reduces the flexibility of the

5

Script

Wrapper

Extension ContextPage Context

C
all

R
et

ur
n

Call

Allowed?

Original Function

Yes

No

Default value

Filtered value

Fig. 2: A policy replaces a function by a wrapper. The
extension implements the logic to ask the user whether the
function shall be blocked or the original function is executed.

extension, we chose this approach as for a regular user it is
clearly not feasible to choose from protection policies or even
define custom protection policies.

V. IMPLEMENTATION OF Chrome Zero

In this section, we describe Chrome Zero, our open-
source1 proof-of-concept implementation of JavaScript Zero
for Google Chrome 49 and newer. Implementing Chrome Zero
faces certain challenges:

C1 Restrictions must not be circumventable using self-
modifying code, such as higher-order scripts.

C2 Restricting access to potentially dangerous features must
be irreversible for a website.

C3 Restrictions must not have a significant impact on com-
patibility and user experience.

In addition to the aforementioned challenges, implementing
JavaScript Zero as a browser extension results in a trade-off
between compatibility with up-to-date browsers and function-
ality we can use, i.e., we cannot change the browser and thus
have to rely on functions provided by the extension API.

First, we describe in Section V-A how to retrofit virtual ma-
chine layering for security and extend it for objects using proxy
objects [28]. Virtual machine layering was originally developed
for low-overhead run-time monitoring of functions [19]. We
use it to guarantee that a policy is always applied to a function
(Challenge C1). In Section V-B, we show that JavaScript
closures in combination with object freezing can be utilized
to secure the virtual machine layering approach to guarantee
irreversibility of policies (Challenge C2). This combination
of virtual machine layering and closures provides strong se-
curity boundaries for Chrome Zero. Finally, we discuss in
Section V-C how to maintain practical usability of Chrome
Zero (Challenge C3), despite the restrictions it introduces.

A. Virtual machine layering

To ensure that our own function is called instead of the
original function, without modifying the browser, we facilitate
a technique known as virtual machine layering [19]. Although
this technique was originally developed for low-overhead run-
time monitoring, we show that in combination with JavaScript
closures, it can also be applied as a security mechanism.
For security, virtual machine layering has a huge advantage

1Chrome Zero: https://github.com/IAIK/ChromeZero

1 var original_reference = window.performance.now;
2 window.performance.now = function() { return 0; };
3 // call the new function (via function name)
4 alert(window.performance.now()); // == alert(0)
5 // call the original function (only via reference)
6 alert(original_reference.call(window.performance));

Listing 2: Virtual machine layering applied to the function
performance.now. The function name points to the new
function, the original function can only be called using the
reference.

over state-of-the-art source rewriting techniques [38], [56],
[36], where functions are replaced directly in the source code.
Ensuring that source rewriting cannot be circumvented is a
hard problem, as function calls can be generated dynamically
and are thus not always visible in the source code [1]. Support
for such higher-order scripts is strictly necessary for full
protection, as failing to apply a policy to only one function
breaks the security guarantees of the security policies. How-
ever, higher-order scripts are often out-of-scope or not fully
supported [24]. In contrast, virtual machine layering ensures
that functions are replaced at the lowest level, right before they
are executed by the JavaScript engine.

Listing 2 shows an example of virtual machine layering.
As JavaScript allows to dynamically extend and modify pro-
totypes, existing functions can be changed, and new functions
can be added to every object. Virtual machine layering takes
advantage of this language property. Chrome Zero saves a
reference to the original function of an object and replaces
the original function with a wrapper function. The original
function can only be called using the saved reference. Calling
the function by using the function name will automatically
call the wrapper function. As Chrome Zero has full access to
the website, it can use virtual machine layering to replace any
original function. We can ensure that the code of Chrome Zero
is executed before the page is rendered, and thus, that no other
code can save a reference to the original function.

Additionally, virtual machine layering covers higher-order
scripts without any additional costs. Higher-order scripts are
scripts which are dynamically created (or loaded) and executed
by existing scripts. There are multiple ways of creating higher-
order scripts, including eval, script injection, function con-
structors, event handlers, and setTimeout. As any higher-
order script automatically uses the re-defined function without
further changes, policies are automatically applied to higher-
order scripts as well, and there is no possibility for obfuscated
code to circumvent the function replacement.

As JavaScript Zero supports policies not only for functions
but also for properties and objects, we have to extend virtual
machine layering, which was originally only intended for
functions.

1) Properties: Typically, a property of a prototype is not a
function, but a simple data value. JavaScript allows to replace
all properties by special functions called accessor properties.
Accessor properties are a special kind of property, where every
access to the property triggers a user-defined function. In case
the property was already an accessor property, Chrome Zero
simply replaces the original function. Thus, regardless of the

6

https://github.com/IAIK/ChromeZero

Script

Methods

Object
Methods

Filter

new Object

Proxy(Object)

Fig. 3: Dangerous objects are wrapped in proxy objects. The
proxy object decides whether methods of the original object
are called or substituted by a different functions.

1 (function() {
2 // original is only accessible in this scope
3 var original = window.performance.now;
4 window.performance.now = function() {
5 return Math.floor((original.call(window.performance))
6 / 1000.0) * 1000.0;
7 }; })();

Listing 3: Virtual machine layering applied to the function
performance.now within a closure. The function name
points to the new function, the original function can only be
called using the reference. However, the reference is not visible
outside the scope, i.e., only the wrapper function can access
the reference to the original function.

type of property, we can convert every property to an accessor
property using Object.defineProperty.

2) Objects: To be able to apply policies to objects, we wrap
the original object within a proxy object as shown in Figure 3.
The proxy object contains the original object and forwards all
functions (which are not overwritten) to the original object.
Thus, all states are still handled by the original object, and
only functions for which a policy is defined have to be re-
implemented in the proxy object.

Although JavaScript prototypes have a constructor, simply
applying virtual machine layering to the constructor function
is not sufficient. The constructor function is only a pointer
to the real constructor and not used to actually instantiate
the object. The alternative to the proxy object for replacing
the constructor is to re-implement the entire object with all
methods and properties. However, as this requires considerable
engineering effort and cannot easily be automated, it is not
feasible, and we thus rely on the proxy object.

B. Self-protection

An important part of the implementation is that it is not
possible for an attacker to circumvent the applied policies
(Challenge C2). Thus, an implementation has to ensure that
an attacker cannot get hold of any reference to the original
functions. We utilize JavaScript closures for security, by cre-
ating anonymous scopes not connected to any object and thus
inaccessible to code outside of the closure. Listing 3 shows
virtual machine layering wrapped in a closure.

With the original version of virtual machine layering as
shown in Listing 2, an attacker could simply guess the name
of the variable holding the original reference. Furthermore,
all global variables are members of the JavaScript root object
window, and an attacker could use reflection to iterate over all
variables until the function reference is discovered. Closures
provide a way to store data in a scope not connected to

the window object. Thus, by applying the virtual machine
layering process within a closure, the reference to the original
function is still available to the wrapper function but inacces-
sible to any code outside of the closure. This guarantees that
the virtual machine layering is irreversible.

At the time of writing, there is no mechanism to modify a
function without redefining it. Thus, an attacker cannot inject
new code into the wrapper function (or modify the existing
code) without destroying the closure and therefore losing the
reference to the original function.

Additionally, objects have to be protected using
Object.freeze after the virtual machine layering
process. This ensures that deleting the function does not
revert to the original function pointer, as it is otherwise the
case in Google Chrome.

If a policy requires user interaction, i.e., the user has
to decide whether a function shall be executed or not, this
logic must also be protected against an attacker. By relying
on a browser extension, we already have the advantage of
a different execution context and thus a different security
context. A website cannot access data inside an extension or
influence code running inside an extension. This also protects
the policies, which are stored within the extension. Therefore,
there is no possibility for a malicious website to modify or
inject new policies.

C. User Interface

Challenge C3 is to have no significant impact on compati-
bility and user experience. This implies that Chrome Zero must
not have a perceivable performance impact (cf. Section VI).

As diverting the control flow into the extension (cf. Fig-
ure 2) is relatively costly, we only do that if absolutely
necessary. Figure 4 shows how Chrome Zero only diverts the
control flow to the extension if a policy requires that the user is
asked for permission. In all other cases, we can directly replace
the function with a stub or wrapper function (Figure 4b and
Figure 4c) before loading a page.

As JavaScript does not provide a mechanism to block
scripts, except for the built-in pop-up boxes (e.g., alert),
pausing a function to ask the user for permission requires
interaction with the browser extension. Chrome Zero relies
on the Google Chrome Debugger API [12] which extends the
functionality of JavaScript to influence and inspect the internal
state of the JavaScript engine. Using Chrome’s remote debug-
ging protocol [11], Chrome Zero registers a function which
is called whenever a script uses the debugger keyword.
The effect of the debugger keyword is that the JavaScript
engine pauses all currently executing scripts before calling the
registered function [27].

While the script—and thus the entire page—is paused,
Chrome Zero asks the user for permission to execute the
current function. The result is then returned to the calling
function by writing it to a local variable within the closure, and
function execution is resumed using the Debugger API. Note
that only Chrome Zero can access the local variable that stores
the result, as all variables within the closure are inaccessible to
the remaining page (cf. Section V-B). The function then either
resumes execution of the function, or returns a default value in

7

Script

Original Function

C
all

R
et

ur
n

(a) Normal function

Script

Function Override

Original Function

C
all

R
et

ur
n

(b) Blocked function

Script

Function Wrapper

C
all

R
et

ur
n

m
od

ifi
ed

Original Function

C
all

R
et

ur
n

(c) Modified function

C
al

l

Function Wrapper
Call original

or return

Ask

Script

C
all

R
et

ur
n

Original Function

C
all

R
et

ur
n

(d) Function with user permission

Fig. 4: (a) A normal, unmodified function call as reference. (b) If a function is blocked, it can be immediately replaced with a
function returning the default value. (c) If the return value has to be modified, the function can be replaced by an anonymous
JavaScript closure which applies the modification directly on the page. (d) Only if the user has to be asked for permission, a
switch into the extension context is necessary.

case the user does not give permission to execute the function.
Spurious usage of the debugger keyword on a (malicious)
website has no effect, as Chrome Zero just continues if no
policy is found for the current function.

Chrome Zero does not instrument the existing browser per-
mission system, as it cannot be retrofitted to protect arbitrary
functions and objects. The existing browser permission system
only works for APIs designed to be used with the permission
system, i.e., the API has to be asynchronous by relying on
callback functions or promises. The browser asks the user
for permission, and if the user accepts, the browser calls a
callback function with the result, e.g., the current geolocation.
Hence, synchronous APIs, e.g., the result of the function call
is provided as a return value, cannot be protected with the
browser’s asynchronous permission system. For the protection
to be complete, we have to handle both synchronous as well
as asynchronous function calls, and can therefore not rely on
the browser’s internal permission system.

VI. SECURITY EVALUATION

In this section, we evaluate JavaScript Zero by means
of our proof-of-concept Chrome extension, Chrome Zero. In
the first part of the evaluation, we show how Chrome Zero
prevents all microarchitectural and side-channel attacks that
can be mounted from JavaScript (cf. Table I). Furthermore,
we show how policies can prevent exploits. We evaluate how
many exploits are automatically prevented by protecting users
against microarchitectural and side-channel attacks.

A. Microarchitectural and Side-Channel Attacks

To successfully prevent microarchitectural and side-channel
attacks, we have to eliminate the requirements identified in
Section II-B. Depending on the requirements we eliminate,
microarchitectural and side-channel attacks are not possible
anymore (cf. Table I). Consequently, we discuss policies to
eliminate each requirement. Table II shows a summary of all
policies and how they affect state-of-the-art attacks. Table III
shows which policy is active on which protection level.

1) Memory Addresses: In all known attacks, array buffers
are used to retrieve information on the underlying memory
address. An attacker can exploit that array buffers are page-
aligned to learn the least significant 12 bits of both the virtual
and physical address [33]. Thus, we have to ensure that array
buffers are not page-aligned and that an attacker does not know
the offset of the array buffer within the page.

Array buffers are raw binary data buffers, storing values
of arrays. However, their content cannot be accessed directly,
but only using typed arrays or DataViews. Thus, we have to
proxy both the DataView object as well as all typed arrays
(e.g., Uint8Array, Uint16Array, etc.).

a) Buffer ASLR: To prevent the arrays from being page-
aligned, we introduce buffer ASLR, which randomizes the start
of the array buffer. We overwrite the length argument of the
constructor to allocate additional 4KB. This allows us to move
the start of the array anywhere on the page by generating a
random offset in the range [0; 4096). This offset is then added
to the array index for every access. Hence, all data is shifted,
i.e., the value at index 0 is not page-aligned but starts at a
random position within the page. Thus, an attacker cannot rely
on the property anymore that the 12 least significant address
bits of the first array buffer index are ‘0’.

b) Preloading: However, the protection given by buffer
ASLR is not complete, as an attacker can still iterate over a
large array to detect page borders using page faults [15], [40].
With 21 bits of the virtual and physical address, a THP page
border contains even more information for an attacker. One
simple prevention for this attack is to iterate through the array
after constructing it. Accessing all underlying pages triggers a
page fault for every page, and an attacker subsequently cannot
learn anything from iterating over the array, as the memory
is already mapped. Thus, Rowhammer.js [15] and the DRAM
covert channel [40] are prevented by Chrome Zero.

c) Non-determinism: Instead of preloading, (i.e., iterat-
ing over the array after construction), we can modify the setter
of the array to add a memory access to a random array index
for every access to the array. This has two advantages in terms
of security. First, with only preloading, an attacker could wait
for the pages to be swapped out, or deduplicated, enabling

8

TABLE II: ALL DISCUSSED POLICIES (EXCEPT FOR SENSORS) AND THEIR EFFECT ON ATTACKS.

Policy
Prevents Rowham- Page Dedu- DRAM Covert Anti- Cache Eviction Keystroke Browser Exploits (cf.

mer.js [15] plication [14] Channel [40] ASLR [13] [33], [15], [40], [13] Timing [47], [20] [44], [45], [47] Section VI-B)
Buffer ASLR
Array preloading
Non-deterministic array
Array index randomization
Low-resolution timestamp
Fuzzy time * * * *
WebWorker polyfill
Message delay
Slow SharedArrayBuffer
No SharedArrayBuffer * * * *
Summary

Symbols indicate whether a policy fully prevents an attack, (), partly prevents and attack by making it more difficult (), or does not prevent an attack ().
A star (*) indicates that all policies marked with a star must be combined to prevent an attack.

TABLE III: A TABLE OF HOW POLICIES CORRESPOND TO THE PROTECTION LEVELS OF Chrome Zero.

Requirement
Protection Level Off Low Medium High Paranoid

Memory addresses - Buffer ASLR Array preloading Non-deterministic array Array index randomization
Accurate Timing - Ask Low-resolution timestamp Fuzzy time Disable
Multithreading - - Message delay WebWorker polyfill Disable
Shared data - - Slow SharedArrayBuffer Disable Disable
Sensor API - - Ask Fixed value Disable

0 0.2 0.4 0.6 0.8 1 1.2

·104

0

0.5

1
·105

Array offset [KB]

A
cc

es
s

tim
e

[c
yc

le
s]

(a) Page border detection without random accesses.

0 1,000 2,000 3,000 4,000 5,000
0

0.5

1
·105

Array offset [KB]

A
cc

es
s

tim
e

[c
yc

le
s]

(b) Page border detection with random accesses.

Fig. 5: Page border detection without and with Chrome Zero.
When iterating over an array, page faults cause a higher timing
than normal accesses, visible as timing peaks.

page border detection again. The random accesses prevent the
page border detection, as an attacker cannot know whether the
page fault was due to the regular access or due to a random
access. As shown in Figure 5, with the random accesses, the
probability to trigger a page fault for the first accesses is
relatively high, as pages are not mapped in the beginning.
This probability decreases until all pages are mapped. Thus, an
attacker cannot reliably detect the actual border of a page but
only the number of pages. Second, this prevents the generation
of eviction sets [33], [15], [40], [13]. A successful eviction of

50 100 150 200 250 300 350 400 450

0
2
4
6

·105

Access time [cycles]

N
um

be
r

of
ca

se
s

cache hit cache miss

(a) Prime+Probe results without random accesses.

1,500 1,600 1,700 1,800 1,900 2,000 2,100 2,200 2,300 2,400

0
0.5
1

1.5
·104

Access time [cycles]

N
um

be
r

of
ca

se
s

cache hit cache miss

(b) Prime+Probe results with random accesses.

Fig. 6: When adding random accesses, the timings for cache
hits and misses blend together, making it impractical to decide
whether an access was a cache hit or a miss. In contrast to a
benign use case, the access time is significantly increased as
the adversary is priming (i.e., thrashing) the cache and any
memory access is likely a cache miss.

a cache set requires an attacker to measure the access time
of a special memory access pattern [15]. Adding random ac-
cesses in between prevents an attacker from obtaining accurate
measurements, as the random accesses influence the overall
timing (cf. Figure 6). Note that the access time is significantly
increased as the adversary is priming (i.e., thrashing) the cache
and thus, any additional memory access is likely a cache miss.

9

Hence, this does not relate to any benign use case performance
or access time.

d) Array Index Randomization: One attack that can-
not be thwarted with the discussed policies is the page-
deduplication attack [14]. In this attack, an attacker only has
to be in control over the content of one page to deduce
if a page with the same content already exists in memory.
Allocating a large array still gives an attacker control over at
least one page. To prevent a page deduplication attack from
being successful, we have to ensure that an attacker cannot
deterministically choose the content of an entire page. One
possible implementation is to make the mapping between the
array index and the underlying memory unpredictable by using
a random linear function.

We overwrite the array to access memory location f(x)
when accessing index x with f(x) = ax + b mod n where
a and b are randomly chosen and n is the size of the
ArrayBuffer. Furthermore, a and n must be co-prime to
generate a unique mapping from indices to memory locations.
To find a suitable a, we can simply choose a random a in
the array constructor and test whether gcd(a, n) = 1. As the
probability of two randomly chosen numbers to be co-prime
is 1

ζ(2) = 6
π2 ≈ 61% (for n → ∞) [30], this approach is

computationally efficient. That is, the expected value is 1.64
random choices to find two co-prime numbers (for n→∞).

As a and b are inaccessible to an attacker, the mapping
ensures that an attacker cannot predict how data is stored in
physical memory. An attacker can also not reverse a and b
because there is no way to tell whether a guess was correct, as
buffer ASLR and preloading prevent any reliable conclusions
from page faults. Thus, an attacker cannot control the content
of a page, thwarting page deduplication attacks [14].

2) Accurate Timing: Many attacks within the browser re-
quire highly accurate time measurements. Especially microar-
chitectural attacks require time measurements with a resolution
in the range of nanoseconds [33], [15], [40], [13]. Such high-
resolution timestamps were readily available in browsers [33]
but have been replaced by lower resolution timestamps in
all modern browsers in 2015 [2], [6], [9], [25]. However,
Schwarz et al. [40] showed that it is still possible to get a
nanosecond resolution from these timestamps by exploiting
the underlying high-resolution clock.

a) Low-resolution timestamps: As a policy, we can
simply round the result of the high-resolution timestamp
(window.performance.now) to a multiple of 100ms.
This is exactly the same behavior as implemented in the
Tor browser. Thus, we achieve the same protection as the
Tor browser, where the recoverable resolution is only 15 µs,
rendering it useless for many attacks [40].

b) Fuzzy time: A different approach is to apply fuzzy
time to timers [46]. In addition to rounding the timestamp,
fuzzy time adds random noise to the timestamp to prevent
exact timing measurements but still guarantees that the times-
tamps are monotonically increasing. Kohlbrenner et al. [18]
implemented this concept in Fuzzyfox, a Firefox fork. We can
achieve the same results using a simple policy that implements
a variant of the algorithm proposed by Vattikonda et al. [46]
shown in Listing 4, without requiring constant maintenance of
a browser fork.

1 (function() {
2 var wpn = window.performance.now, last = 0;
3 window.performance.now = function() {
4 var fuzz = Math.floor(Math.random() * 1000), //1ms
5 now = Math.floor(wpn.call(window.performance)*1000);
6 var t = now - now % fuzz;
7 if(t > last) last = t;
8 return last / 1000.0;
9 };})();

Listing 4: Fuzzy time [46] applied to the high-resolution timing
API with a 1ms randomization.

unprotected timestamp rounding fuzzy time
0%

50%

100%
100 97

65

0 3 80 0
27

both correct fslow misclassified ffast misclassified

Fig. 7: Edge thresholding to distinguish whether the function
fslow takes longer than ffast . The difference between the
execution times is less then the provided resolution.

We evaluated our policies for low-resolution timestamps
and fuzzy time by creating two functions with a runtime
below the resolution of the protected high-resolution timer.
Using edge thresholding [40], we tried to distinguish the
two functions based on their runtime. For the evaluation, we
rounded timestamps to a multiple of 1ms and used a 1ms
randomization interval for the fuzzy time. The two functions
fslow and ffast , which we distinguish, have an execution time
difference of 300 µs. Figure 7 shows the results of this evalu-
ation. If no policy is applied to the high-resolution timer, the
functions can always be distinguished based on their runtime.
With the low-resolution timestamp and edge thresholding, the
functions are correctly distinguished in 97% of the cases, as
the underlying clock still has a resolution in the range of
nanoseconds. When fuzzy time is enabled, the functions are
correctly distinguished in only 65% of the cases, and worse, in
27% of the cases the functions are wrongly classified, i.e., the
faster-executing function is classified as the slower function.

Figure 8 shows the result of fuzzy time on the JavaScript
keystroke detection attack by Lipp et al. [20]. Without fuzzy
time, it can be clearly seen whenever the user taps on the touch
screen of a mobile device (Figure 8a). By enabling the fuzzy
time policy, the attack is fully prevented, and no taps can be
seen in the trace anymore (Figure 8b).

3) Multithreading: As the resolution of the built-in high-
resolution timer has been reduced by all major browsers [2],
[6], [9], [25], alternative timing primitives have been
found [18], [40], [13]. Although several new timing primitives
work without multithreading [18], [40], only the timers using
multithreading achieve a resolution that is high enough to
mount microarchitectural attacks [13], [40], [47], [20].

a) WebWorker polyfill: A drastic—but effective—
policy is to prevent real parallelism. To achieve this, we can

10

0.2 0.4 0.6 0.8 1
1,700
1,750
1,800
1,850

tap tap tap tap

Runtime [s]

D
el

ta
[c

ou
nt

er
]

(a) Without Chrome Zero.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
600

700

800

900

tap tap tap tap

Runtime [s]

D
el

ta
[c

ou
nt

er
]

(b) With Chrome Zero.

Fig. 8: Without Chrome Zero, taps can be clearly seen in the
attack by Lipp et al. [20] (Figure 8a). With Chrome Zero, the
attack is prevented and no taps are visible (Figure 8b).

2,560 2,580 2,600 2,620 2,640
0

0.5
1

1.5
2

Runtime [ms]

D
el

ta
[m

s]

(a) Without Chrome Zero.

2,860 2,880 2,900 2,920 2,940
0
1
2
3

Runtime [ms]

D
el

ta
[m

s]

(b) With Chrome Zero.

Fig. 9: Running the attack by Vila et al. [47] shows keystrokes
among other system and browser activity (Figure 9a). With
Chrome Zero in place, the postMessage timings are delayed
and thus keystrokes cannot be detected anymore (Figure 9b).

completely replace WebWorkers by a polyfill intended for un-
supported browsers. The polyfill [29] simulates WebWorkers
on the main thread, trying to achieve similar functionality
without support for real parallelism. Thus, all attacks relying
on real parallelism [13], [40], [47], [20] do not work anymore.

b) Message delay: A different policy to specifically
prevent certain timing primitives [40] and attacks on the
browser’s rendering queue [47] is to delay the postMessage
function. If the postMessage function randomly delays
messages (similar to Fuzzyfox [18]), the attack presented by
Vila et al. [47] does not work anymore, as shown in Figure 9.

400 450 500 550 600 650

0
100
200
300

Access time [buffer increments]

N
um

be
r

of
ca

se
s

cache hit cache miss

(a) Without Chrome Zero.

850 1,050 1,250 1,450 1,650 1,850

0
5
10
15

Access time [buffer increments]

N
um

be
r

of
ca

se
s cache hit cache miss

(b) With Chrome Zero.

Fig. 10: Using SharedArrayBuffer in combination with
web worker to build a high-resolution timing primitive as
proposed by Gras et al. [13] and Schwarz et al. [40]. Without
Chrome Zero, cache hits and misses are clearly distinguishable
(Figure 10a). Configuring Chrome Zero to delay accesses to
the SharedArrayBuffer leads to a uniform distribution in
timings, thwarting the attacks (Figure 10b).

4) Shared Data: SharedArrayBuffer is the only
data type which can be shared across multiple workers in
JavaScript. This shared array can then be abused to build a
high-resolution timer. One worker periodically increments the
value stored in the shared array while the main thread uses
the value as a timestamp. This technique is the most accurate
timing primitive at the time of writing, creating a timer with
a resolution in the range of nanoseconds [13], [40].

a) No SharedArrayBuffer: At the time of writ-
ing, the SharedArrayBuffer is by default deactivated
in modern browsers. Thus, websites should not rely on this
functionality anyway, and a policy can simply keep the
SharedArrayBuffer disabled if vendors enable it.

b) Slow SharedArrayBuffer: On our Intel i5-
6200U test machine, we achieve a resolution of 0.77 ±
0.01 ns with the SharedArrayBuffer timing primitive.
This allows use to clearly distinguish cache hits from cache
misses (Figure 10a), and thus mount the attacks proposed by
Schwarz et al. [40] as well as Gras et al. [13]. To protect users
from these attacks, our policy randomly delays the access to
the SharedArrayBuffer. Using this policy, we reduce the
resolution to 4215.25 ± 69.39 ns, which is in the same range
as the resolution of the native performance.now() timer.
Thus, these microarchitectural attacks, which require a high-
resolution timer, do not work anymore as shown in Figure 10b.

5) Sensor API: As mobile devices are equipped with many
sensors, JavaScript provides several APIs allowing websites
to access sensor data, e.g., accelerometer, ambient light, or
battery status. While some of those interfaces allow developers

11

to build more functional and user-friendly applications, they
also facilitate leakage of sensitive information. While modern
browsers explicitly ask the user for permission if the running
websites want to access the user’s geolocation, access to other
APIs is silently permitted.

a) Battery Status API: After Olejnik et al. [32] showed
the potential privacy risk of the HTML5 Battery Status API as
a tracking identifier, Firefox disabled the interface with version
52 [8]. However, Chrome still offers unrestricted access to
this API without asking for permission. Thus, we introduce
a policy allowing to either randomize the properties of the
battery interface, to set them to fixed values, or to disable the
interface entirely. With this policy, the Battery Status API can
not be used as a tracking identifier anymore.

b) Ambient Light Sensor: The ambient light sensor can
be used to infer user PINs [42] or to recover browsing history
information [31]. While the API needs to be enabled manually
in the Chrome browser, it is enabled by default in the Firefox
browser. By introducing a policy that either returns constant
values for the ambient light sensor, or disables the interface,
an attacker is unable to perform these attacks.

c) Device Motion, Orientation, and Acceleration: The
motion sensor data and orientation sensor data of mobile web
browsers can be exploited to infer user PIN input [23]. Both
are available to websites without any permissions. In order
to mitigate such attacks, we introduce a policy that allows to
spoof the sensor data or to prohibit access entirely.

B. Exploits

Although exploits are out-of-scope for the permission sys-
tem (cf. Section II-C), we investigate the (side-)effect of our
policies on JavaScript exploits. For this, we investigate CVEs
that are exploitable via JavaScript and were discovered since
Chrome 49, as Chrome Zero requires Chrome 49 and later.

To evaluate whether Chrome Zero protects a user from a
specific exploit, we first reproduce the exploit without Chrome
Zero and then activate Chrome Zero to check whether the
exploit still works. We reproduced all 12 CVEs2 for the
Chrome JavaScript engine, which were discovered since 2016
for Chrome 49 or later and for which we could find proof-of-
concept implementations online. All of the 12 CVEs lead to
either a crash of the current tab or to information leakage.

With Chrome Zero in place, half of them are prevented,
leaving only 6 CVEs that are still exploitable. The prevented
CVEs all rely on at least one object which we modify (e.g.,
ArrayBuffer) and thus do not work with the modified ob-
ject. Furthermore, we expect that actual remote code execution
using the working exploits gets more complicated if policies
such as array index randomization or buffer ASLR are in place.
Thus, Chrome Zero provides additional protection against 0-
days without requiring explicit policies. Creating policies to
specifically target CVEs is left to future research.

VII. USABILITY EVALUATION

In this section, we analyze the usability impact of Chrome
Zero by performing a performance analysis and a double-

2CVE-2016-1646, 1653, 1665, 1669, 1677, 5129, 5172, 5198, 5200, 9651,
2017-5030, 5053

−0.6% −0.4% −0.2% 0% 0.2% 0.4% 0.6%

baidu.com
facebook.com

google.co.in
google.com

qq.com
reddit.com

taobao.com
wikipedia.org

yahoo.com
youtube.com

JavaScript computation overhead in percent

D
om

ai
n

no protection protection level high

Fig. 11: The computation overhead of the JavaScript engine
while loading each of the Alexa Top 10 websites without
protection and with protection level high. The performance
overhead is negligible for most websites.

TABLE IV: RESULTS OF THE JETSTREAM BENCHMARK.

Without Chrome Zero With Chrome Zero

Latency 71.46 ± 4.43 71.33 ± 2.43
Throughput 220.45 ± 6.80 214.71 ± 3.50

Total 134.90 ± 5.96 132.81 ± 2.92

The higher the score, the better the performance.

blind user study. We first analyze how many websites use
functionality which is also used in microarchitectural and
side-channel attacks. We then analyze the performance impact
on the Alexa Top 10 websites. Finally, we show whether
the protection mechanism has any impact on the browsing
experience, i.e., whether there are pages that do not work as
expected anymore, for the Alexa Top 25 websites.

A. Performance

We evaluated the performance overhead of Chrome Zero
in both micro and macro benchmarks.

First, we evaluated the impact of Chrome Zero on the
loading time of a page. We measured a page loading latency
between 10.64ms if no policy is active, and 89.08ms if
policies protecting against all microarchitectural and side-
channel attacks are active. As on every page load the current
policies are loaded and injected into the current tab, the latency
grows linearly with the number of policies, and delays the
actual rendering of the page. On average, we measured a
latency of approximately 3.4ms per active policy, i.e., every
policy delays the loading of a newly opened page by 3.4ms.

Second, we investigated the overhead for Chrome’s
JavaScript engine by using the internal profiler. Figure 11
shows the overhead for the Alexa Top 10 websites. The runtime
increase of the JavaScript engine had a median of 1.82%,
which corresponds to only 16ms.

Finally, we used the JetStream [3] browser benchmark,
which is developed as part of the WebKit engine. We measure
a performance overhead of 1.54% when using Chrome Zero.
Table IV shows the detailed scores of the benchmark.

12

A reason for the low overhead of Chrome Zero is the
JavaScript Just-In-Time (JIT) compiler. Chrome’s JIT consists
of several compilers, producing code on different optimization
levels [39]. As the code is continuously optimized by the JIT,
our injected functions are compiled to highly efficient native
code, with a negligible performance difference compared to
the original native functions. The results of our benchmarks
show that Chrome Zero does not have a visible impact on the
user experience for an everyday usage.

B. Compatibility

For Chrome Zero to be usable on a day-to-day basis, it is
important that the majority of websites is still usable if policies
are active. We analyzed the Alexa Top 100 websites with a
protection level of high, the second highest protection level (cf.
Table III). Out of the 100 pages, all of them used JavaScript,
and 57 relied on functions for which the protection level high
defines policies. For all these pages, we verified that Chrome
Zero did not cause any error when testing some of the site’s
basic functionality. For a thorough evaluation, we conducted
a double-blind user study to test whether Chrome Zero has an
impact on the browsing experience. We designed the study to
have 24 participants to have a maximum standard error below
15% at a confidence level of 85%. The 24 participants, which
we recruited by advertising it through word-of-mouth, had
different backgrounds, ranging from students without any IT
background to information-security post-doctoral researchers.

1) Method: We explained every participant that we devel-
oped a browser extension which provides additional protection
against attacks. We showed two instances of Google Chrome
to the participant, one without Chrome Zero (A) and one with
Chrome Zero set to protection level high (B) for every website
in the Alexa Top 25. For every website, a fully automated
script randomly chose whether browser instance A or B had
Chrome Zero activated, without any interaction of the study
conductor or the study participant. Hence, neither the study
participant nor the study conductor knew which of the two
browsers had Chrome Zero activated, making the study double
blind. After 1 minute, the script asked the user whether there
was any noticeable difference between the two pages, and
if so, whether browser A or browser B had Chrome Zero
enabled. The results of these questions were saved in a file
and automatically evaluated after the user tested all 25 pages.
Every correct user answer was counted as a 100% correct
answer, if the user did not notice any difference, we counted
it as a 50% probability to make the correct guess, and if the
user answered incorrectly, we counted a 0% correct answer.

2) Results: Figure 12 shows the results of our user study.
The overall probability to correctly detect the presence of
Chrome Zero was 50.2%. The maximum average success rate
of a participant was 60%; the minimum was 40%.

The maximum detection rate for a website was 62.5% for
yahoo.com (standard error ±0.05). For all other websites, the
detection rate was not better than random guessing. The mini-
mum detection rate for a website was 41.7% for amazon.com
and sina.com.cn (standard error ±0.05).

For the 6 websites where no Chrome Zero policy was
active, users guessed correctly in 48.3% on average (standard
error ±0.049), i.e., a deviation of 1.7pp to random guessing.

go
og

le
.c

om
yo

ut
ub

e.
co

m

fa
ce

bo
ok

.c
om

ba
id

u.
co

m
w

ik
ip

ed
ia

.o
rg

ya
ho

o.
co

m
qq

.c
om

re
dd

it.
co

m
ta

ob
ao

.c
om

tw
itt

er
.c

om
am

az
on

.c
om

tm
al

l.c
om

so
hu

.c
om

liv
e.

co
m

vk
.c

om
in

st
ag

ra
m

.c
om

si
na

.c
om

.c
n

jd
.c

om

w
ei

bo
.c

om
36

0.
cn

lin
ke

di
n.

co
m

ya
nd

ex
.ru

ne
tfl

ix
.c

om
eb

ay
.c

om
im

gu
r.c

om

25%

50%

75%

Top 25 Alexa domains

Pr
ob

ab
ili

ty

active policies
no active policies

Fig. 12: Probability that a user correctly identifies the browser
with Chrome Zero and the corresponding standard error. Only
for one website (yahoo.com) the users had a chance of iden-
tifying the browser with Chrome Zero that was clearly above
the random guessing probability.

For the 19 websites where at least one Chrome Zero policy was
active, users guessed correctly in 50.8% on average (standard
error ±0.055), i.e., a deviation of 0.8pp to random guessing.
This highlights how negligible the differences in the user
experience are.

While their classification of the instance was many times
incorrect, participants stated loading time, cookie-policy dia-
logues and website redirections as the reason for selecting the
instance as the one using Chrome Zero.

Although our implementation is only a proof-of-concept
implementation, the results of the study confirm that JavaScript
Zero is practical, and our implementation of Chrome Zero is
usable on a day-to-day basis.

VIII. RELATED WORK

In this section, we discuss related work on protecting
users from the execution of potential harmful JavaScript code.
While there are several proposed solutions, JavaScript Zero is
the only technique fully implemented as a browser extension
only (Chrome Zero) without negatively affecting the browsing
experience. Chrome Zero does not rely on any changes to
existing source code or the system’s environment and thus does
not require support by developers or browser vendors.

a) Browser extensions: Browser extensions such as
NoScript [10] or uBlock [37] allow users to define policies
to permit or prohibit the execution of JavaScript depending on
their origin, i.e., a page can either completely block JavaScript
or execute it without any restrictions. In contrast, Chrome Zero
offers a more fine-grained permission model that operates on
function level and does not interfere with dynamic website
content. Furthermore, JavaScript Zero directly targets attack
prevention, whereas existing browser extensions aim primarily
at blocking advertisements and third-party tracking code.

In concurrent work, Snyder et al. [41] proposed a browser
extension to protect against exploits in general, based on
the same generic idea as JavaScript Zero. They first exhaus-
tively evaluate the usage statistics of JavaScript APIs and
their connection to CVEs and then, similar to our approach,
selectively block the corresponding JavaScript APIs. Based

13

on this approach they block 52% of all CVEs, while only
impacting the usability of 4% to 7% of the tested websites.
When a usability impact on 16% of the tested websites is still
acceptable, they can even block 72% of all CVEs. This is a
significantly lower usability impact than previous approaches
like NoScript [10] or uBlock [37]. With our focus on mitigating
microarchitectural and side-channel attacks, we complement
the work by Snyder et al. [41] and show that the underlying
generic idea is not only applicable to CVEs or side-channel
attacks, but to both types of attacks. This highlights the
strength of the underlying idea of both papers.

b) Modified browsers: Meyerovich et al. [24] modified
the JavaScript engine of Internet Explorer 8 to enforce fine-
grained application-specific runtime security policies by the
website developer. In contrast, JavaScript Zero is implemented
as a browser extension and does not rely on any developer to
define security policies. Patil et al. [35] analyzed the access
control requirements in modern web browsers and proposed
JCShadow, a fine-grained access control mechanism in Firefox.
JCShadow splits the running JavaScript into groups with an
assigned isolated copy of the JavaScript context. A security
policy then defines which code is allowed to access objects
in other shadow contexts to separate untrusted third-party
JavaScript code from the website. Stefan et al. [43] proposed
COWL, a label-based mandatory access control system to
sandbox third-party scripts. Bichhawat et al. [5] proposed
WebPol, a fine-grained policy framework to define the aspects
of an element accessible by third-party domains by exposing
new native APIs. All these approaches assume a benign web-
site developer protecting their website from untrusted—and
possibly malicious—third-party libraries trying to manipulate
their website. In contrast, JavaScript Zero does not make any
assumptions in this direction. Any website or library developer
may be malicious, trying to attack the user. JavaScript Zero
neither relies on website developers nor requires any modifi-
cations of the browser or the JavaScript engine.

Kohlbrenner et al. [18] proposed Fuzzyfox, a modified ver-
sion of Firefox that mediates all timing sources by degrading
the resolution of explicit timers and implicit clocks to 100ms.
In contrast to Fuzzyfox, JavaScript Zero successfully prevents
not only timing attacks but also attacks which do not require
high-resolution timing measurements. Mao et al. [21] studied
timing-based probing attacks that indirectly infer sensitive
information from the website. Their tool only allows to identify
malicious operations performing timing-based probing attacks
based on generalized patterns, e.g., the frequency of timing
API usage. JavaScript Zero directly prevents the attack by
either disallowing timers or making them too coarse-grained.

c) Code rewriting: Reis et al. [38] implemented
BrowserShield, a service that automatically rewrites websites
and embedded JavaScript to apply run-time checks to filter
known vulnerabilities. Yu et al. [56] proposed to automatically
rewrite untrusted JavaScript code through a web proxy, in order
to ask the user how to proceed on possible dangerous behavior,
e.g., opening many pop-ups or cookie exfiltration attacks. Their
model only covers policies with respect to opening URLs,
windows, and cookie accesses, and does not protect against
side-channel attacks. Moreover, JavaScript Zero does neither
rewrite any existing code nor rely on any possibly platform-
dependent service such as a web proxy.

d) JavaScript frameworks: Agten et al. [1] presented
JSand, a client-side JavaScript sandboxing framework that
enforces a server-specified policy to jail included third-party
libraries. Phung et al. [36] proposed to modify code in or-
der to protect it from inappropriate behavior of third-party
libraries. Their implementation requires website developers
to manually add protection code to their website. However,
their protection does not apply to scripts loaded in a new
context, i.e., with <frame>, <iframe>, or refresh directives.
Guan et al. [16] studied the privacy implications of the
HTML5 postMessage function and developed a policy-
based framework to restrict unintended cross-origin messages.
As our countermeasure is implemented solely as a browser
extension, it does not rely on any website developer to use a
certain library or to apply any changes to the code.

IX. CONCLUSION

In this paper, we presented JavaScript Zero, a highly prac-
tical and generic fine-grained permission model in JavaScript
to reduce the attack surface in modern browsers. JavaScript
Zero leverages advanced JavaScript language features, such as
virtual machine layering, closures, proxy objects, and object
freezing, for security and privacy. Hence, JavaScript Zero is
fully transparent to website developers and users and even
works with obfuscated code and higher-order scripts. Our
proof-of-concept Google Chrome extension, Chrome Zero,
successfully protects against 11 unfixed state-of-the-art mi-
croarchitectural and side-channel attacks. As a side effect,
Chrome Zero successfully protects against 50% of the pub-
lished JavaScript 0-day exploits since Chrome 49. Chrome
Zero has a low-performance overhead of only 1.82% on aver-
age. In a double-blind user study, we found that for 24 websites
in the Alexa Top 25, users could not distinguish browsers with
and without Chrome Zero correctly, showing that Chrome Zero
has no perceivable (negative) effect on most websites. Our
work shows that transparent low-overhead defenses against
JavaScript-based state-of-the-art microarchitectural attacks and
side-channel attacks are practical.

ACKNOWLEDGMENT

We would like to thank our anonymous reviewers for their
valuable feedback and our study participants for their time.
This work has been supported by the Austrian Research Pro-
motion Agency (FFG), the Styrian Business Promotion Agency
(SFG), the Carinthian Economic Promotion Fund (KWF) under
grant number 862235 (DeSSnet) and has received funding from
the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme
(grant agreement No 681402).

REFERENCES

[1] P. Agten, S. Van Acker, Y. Brondsema, P. H. Phung, L. Desmet,
and F. Piessens, “Jsand: complete client-side sandboxing of third-party
javascript without browser modifications,” in Proceedings of the 28th
Annual Computer Security Applications Conference, 2012.

[2] Alex Christensen, “Reduce resolution of performance.now.” 2015.
[Online]. Available: https://bugs.webkit.org/show bug.cgi?id=146531

[3] Apple, “JetStream 1.1,” Aug. 2017. [Online]. Available: http:
//browserbench.org/JetStream

[4] D. J. Bernstein, “Cache-Timing Attacks on AES,” 2004. [Online].
Available: http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

14

https://bugs.webkit.org/show_bug.cgi?id=146531
http://browserbench.org/JetStream
http://browserbench.org/JetStream
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

[5] A. Bichhawat, V. Rajani, J. Jain, D. Garg, and C. Hammer, “Webpol:
Fine-grained information flow policies for web browsers,” in ES-
ORICS’17, 2017, (to appear).

[6] Boris Zbarsky, “Reduce resolution of performance.now.” 2015.
[Online]. Available: https://hg.mozilla.org/integration/mozilla-inbound/
rev/48ae8b5e62ab

[7] L. Cai and H. Chen, “TouchLogger: Inferring Keystrokes on Touch
Screen from Smartphone Motion,” in USENIX Workshop on Hot Topics
in Security – HotSec, 2011.

[8] Chris Peterson, “Bug 1313580: Remove web content access to Battery
API,” 2016. [Online]. Available: https://bugzilla.mozilla.org/show bug.
cgi?id=1313580

[9] Chromium, “window.performance.now does not support sub-
millisecond precision on Windows,” 2015. [Online]. Available:
https://bugs.chromium.org/p/chromium/issues/detail?id=158234#c110

[10] Giorgio Maone, “NoScript - JavaScript/Java/Flash blocker for a safer
Firefox experience!” Jul. 2017. [Online]. Available: https://noscript.net

[11] Google, “Chrome DevTools Protocol Viewer,” 2017. [Online]. Avail-
able: https://developer.chrome.com/devtools/docs/debugger-protocol

[12] ——, “chrome.debugger,” 2017. [Online]. Available: https://developer.
chrome.com/extensions/debugger

[13] B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida, “ASLR on
the Line: Practical Cache Attacks on the MMU,” in NDSS’17, 2017.

[14] D. Gruss, D. Bidner, and S. Mangard, “Practical memory deduplication
attacks in sandboxed javascript,” in ESORICS’15, 2015.

[15] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A Remote
Software-Induced Fault Attack in JavaScript,” in DIMVA’16, 2016.

[16] C. Guan, K. Sun, Z. Wang, and W. Zhu, “Privacy breach by exploiting
postmessage in html5: Identification, evaluation, and countermeasure,”
in ASIACCS’16, 2016.

[17] P. C. Kocher, “Timing Attacks on Implementations of Diffe-Hellman,
RSA, DSS, and Other Systems,” in CRYPTO’96, 1996.

[18] D. Kohlbrenner and H. Shacham, “Trusted browsers for uncertain
times,” in USENIX Security Symposium, 2016.

[19] E. Lavoie, B. Dufour, and M. Feeley, “Portable and efficient run-time
monitoring of javascript applications using virtual machine layering,”
in European Conference on Object-Oriented Programming, 2014.

[20] M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, and S. Mangard,
“Practical Keystroke Timing Attacks in Sandboxed JavaScript,” in
ESORICS’17, 2017, (to appear).

[21] J. Mao, Y. Chen, F. Shi, Y. Jia, and Z. Liang, “Toward Exposing
Timing-Based Probing Attacks in Web Applications,” in International
Conference on Wireless Algorithms, Systems, and Applications, 2016.

[22] C. Maurice, M. Weber, M. Schwarz, L. Giner, D. Gruss, C. A. Boano,
S. Mangard, and K. Römer, “Hello from the Other Side: SSH over
Robust Cache Covert Channels in the Cloud,” in NDSS’17, 2017.

[23] M. Mehrnezhad, E. Toreini, S. F. Shahandashti, and F. Hao, “Touchsig-
natures: identification of user touch actions and pins based on mobile
sensor data via javascript,” Journal of Information Security and Appli-
cations, 2016.

[24] L. A. Meyerovich and B. Livshits, “Conscript: Specifying and enforcing
fine-grained security policies for javascript in the browser,” in S&P’10,
2010.

[25] Mike Perry, “Bug 1517: Reduce precision of time for Javascript.”
2015. [Online]. Available: https://gitweb.torproject.org/user/mikeperry/
tor-browser.git/commit/?h=bug1517

[26] Mozilla Developer Network, “ArrayBuffer,” 2017. [Online]. Avail-
able: https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/
Global Objects/ArrayBuffer

[27] ——, “debugger,” 2017. [Online]. Available: https://developer.mozilla.
org/en-US/docs/Web/JavaScript/Reference/Statements/debugger

[28] ——, “Proxy,” 2017. [Online]. Available: https://developer.mozilla.org/
en/docs/Web/JavaScript/Reference/Global Objects/Proxy

[29] Nolan Lawson, “A tiny and mostly spec-compliant WebWorker polyfill,”
Nov. 2016. [Online]. Available: https://github.com/nolanlawson/pseudo-
worker

[30] J. Nymann, “On the probability that k positive integers are relatively
prime,” Journal of Number Theory, 1972.

[31] L. Olejnik, “Stealing sensitive browser data with the
W3C Ambient Light Sensor API,” 2017. [Online]. Avail-
able: https://blog.lukaszolejnik.com/stealing-sensitive-browser-data-
with-the-w3c-ambient-light-sensor-api/

[32] L. Olejnik, G. Acar, C. Castelluccia, and C. Diaz, “The leaking battery,”
in Revised Selected Papers of the 10th International Workshop on Data
Privacy Management, and Security Assurance - Volume 9481, 2016.

[33] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis, “The
Spy in the Sandbox: Practical Cache Attacks in JavaScript and their
Implications,” in CCS’15, 2015.

[34] D. A. Osvik, A. Shamir, and E. Tromer, “Cache Attacks and Counter-
measures: the Case of AES,” in CT-RSA, 2006.

[35] K. Patil, X. Dong, X. Li, Z. Liang, and X. Jiang, “Towards fine-grained
access control in javascript contexts,” in 31st International Conference
on Distributed Computing Systems (ICDCS), 2011.

[36] P. H. Phung, D. Sands, and A. Chudnov, “Lightweight self-protecting
javascript,” in ASIACCS’09, 2009.

[37] Raymond Hill, “uBlock Origin - An efficient blocker for Chromium
and Firefox. Fast and lean.” Jul. 2017. [Online]. Available:
https://github.com/gorhill/uBlock

[38] C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky, and S. Esmeir,
“Browsershield: Vulnerability-driven filtering of dynamic html,” in
USENIX Symposium on Operating Systems Design and Implementation,
2006.

[39] Ross McIlroy, “Firing up the Ignition Interpreter,” Aug. 2017.
[Online]. Available: https://v8project.blogspot.co.at/2016/08/firing-up-
ignition-interpreter.html

[40] M. Schwarz, C. Maurice, D. Gruss, and S. Mangard, “Fantastic Timers
and Where to Find Them: High-Resolution Microarchitectural Attacks
in JavaScript,” in FC’17, 2017.

[41] P. Snyder, C. Taylor, and C. Kanich, “Most Websites Don’t Need to
Vibrate: A Cost-Benefit Approach to Improving Browser Security,” in
CCS’17, 2017.

[42] R. Spreitzer, “Pin skimming: Exploiting the ambient-light sensor in
mobile devices,” in Proceedings of the 4th ACM Workshop on Security
and Privacy in Smartphones & Mobile Devices, 2014.

[43] D. Stefan, E. Z. Yang, P. Marchenko, A. Russo, D. Herman, B. Karp,
and D. Mazières, “Protecting users by confining javascript with cowl,” in
USENIX Symposium on Operating Systems Design and Implementation,
2014.

[44] P. Stone, “Pixel perfect timing attacks with html5,” Context Information
Security (White Paper), 2013.

[45] T. Van Goethem, W. Joosen, and N. Nikiforakis, “The clock is still
ticking: Timing attacks in the modern web,” in CCS’15, 2015.

[46] B. C. Vattikonda, S. Das, and H. Shacham, “Eliminating fine grained
timers in Xen,” in CCSW’11, 2011.

[47] P. Vila and B. Köpf, “Loophole: Timing attacks on shared event loops
in chrome,” in USENIX Security Symposium, 2017, (to appear).

[48] W3C, “Battery Status API,” 2016. [Online]. Available: https:
//www.w3.org/TR/battery-status/

[49] ——, “Geolocation API Specification 2nd Edition,” 2016. [Online].
Available: https://www.w3.org/TR/geolocation-API/

[50] ——, “Ambient Light Sensor,” 2017. [Online]. Available: https:
//www.w3.org/TR/ambient-light/

[51] ——, “DeviceOrientation Event Specification,” 2017. [Online].
Available: https://www.w3.org/TR/orientation-event/

[52] ——, “Generic Sensor API,” 2017. [Online]. Available: https:
//www.w3.org/TR/2017/WD-generic-sensor-20170530/

[53] ——, “Javascript APIs Current Status,” 2017. [Online]. Available:
https://www.w3.org/standards/techs/js

[54] W3Techs, “Usage of JavaScript for websites,” Aug. 2017. [Online].
Available: https://w3techs.com/technologies/details/cp-javascript/all/all

[55] Y. Yarom and K. Falkner, “Flush+Reload: a High Resolution, Low
Noise, L3 Cache Side-Channel Attack,” in USENIX Security Sympo-
sium, 2014.

[56] D. Yu, A. Chander, N. Islam, and I. Serikov, “Javascript instrumentation
for browser security,” in ACM SIGPLAN Notices, 2007.

15

https://hg.mozilla.org/integration/mozilla-inbound/rev/48ae8b5e62ab
https://hg.mozilla.org/integration/mozilla-inbound/rev/48ae8b5e62ab
https://bugzilla.mozilla.org/show_bug.cgi?id=1313580
https://bugzilla.mozilla.org/show_bug.cgi?id=1313580
https://bugs.chromium.org/p/chromium/issues/detail?id=158234#c110
https://noscript.net
https://developer.chrome.com/devtools/docs/debugger-protocol
https://developer.chrome.com/extensions/debugger
https://developer.chrome.com/extensions/debugger
https://gitweb.torproject.org/user/mikeperry/tor-browser.git/commit/?h=bug1517
https://gitweb.torproject.org/user/mikeperry/tor-browser.git/commit/?h=bug1517
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/ArrayBuffer
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/ArrayBuffer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/debugger
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/debugger
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://github.com/nolanlawson/pseudo-worker
https://github.com/nolanlawson/pseudo-worker
https://blog.lukaszolejnik.com/stealing-sensitive-browser-data-with-the-w3c-ambient-light-sensor-api/
https://blog.lukaszolejnik.com/stealing-sensitive-browser-data-with-the-w3c-ambient-light-sensor-api/
https://github.com/gorhill/uBlock
https://v8project.blogspot.co.at/2016/08/firing-up-ignition-interpreter.html
https://v8project.blogspot.co.at/2016/08/firing-up-ignition-interpreter.html
https://www.w3.org/TR/battery-status/
https://www.w3.org/TR/battery-status/
https://www.w3.org/TR/geolocation-API/
https://www.w3.org/TR/ambient-light/
https://www.w3.org/TR/ambient-light/
https://www.w3.org/TR/orientation-event/
https://www.w3.org/TR/2017/WD-generic-sensor-20170530/
https://www.w3.org/TR/2017/WD-generic-sensor-20170530/
https://www.w3.org/standards/techs/js
https://w3techs.com/technologies/details/cp-javascript/all/all

	Introduction
	Preliminaries
	Microarchitectural Attacks
	Microarchitectural and Side-Channel Attacks in JavaScript
	JavaScript Exploits

	Threat Model
	Design of JavaScript Zero
	Implementation of Chrome Zero
	Virtual machine layering
	Properties
	Objects

	Self-protection
	User Interface

	Security Evaluation
	Microarchitectural and Side-Channel Attacks
	Memory Addresses
	Accurate Timing
	Multithreading
	Shared Data
	Sensor API

	Exploits

	Usability Evaluation
	Performance
	Compatibility
	Method
	Results

	Related Work
	Conclusion
	References

